
Oracle® Banking Digital Experience
Mobile Application Builder Guide-iOS

Release 25.1.0.0.0
G38598-01
July 2025

Oracle Banking Digital Experience Mobile Application Builder Guide-iOS, Release 25.1.0.0.0

G38598-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose v

Audience v

Documentation Accessibility v

Critical Patches v

Diversity and Inclusion v

Conventions vi

Related Resources vi

Screenshot Disclaimer vi

Acronyms and Abbreviations vi

1 OBDX Servicing Application

1.1 Pre requisite 1-1

1.2 Project Setup 1-1

1.3 Create Project Using Remote UI 1-2

1.4 Create Project by hosting UI on local server machine 1-2

1.5 Configurations for the IOS application 1-4

1.6 Enabling SSL pinning in the application 1-11

1.7 Enabling Force update 1-13

1.8 Device Registration and Push Registration Functionality 1-15

1.9 Generating Certificates for Development, Production 1-16

1.10 Setup for Push Notification in the application 1-20

1.11 Push Notification Actionable Alerts Configuration 1-22

1.12 Push Notification 2FA configuration 1-23

1.13 ODA Chatbot Inclusion 1-23

1.14 Widget Functionality 1-25

1.15 Scan to Pay from Application Icon 1-27

1.16 Passkey (Passwordless login) 1-28

1.17 Deep linking - To open reset password, claim money links with the application 1-31

1.18 Changing App Icons and Assets 1-36

1.19 Archive and Export 1-36

iii

2 OBDX Authenticator Application (Futura Secure)

2.1 Authenticator UI (Follow any one step below) 2-1

2.1.1 Using Built UI 2-1

2.1.2 Using unbuilt UI 2-1

2.1.3 Building UI Manually 2-2

2.2 Authenticator Application Workspace Setup 2-3

2.3 Archiving Authenticator Application 2-5

2.4 Using SSL in Authenticator App 2-7

3 Apply Privacy

4 Make IOS Application Ready for Production Checklist

Index

iv

Preface

Purpose
This guide is designed to help acquaint you with the Oracle Banking application. This guide
provides answers to specific features and procedures that the user need to be aware of the
module to function successfully.

Audience
This document is intended for the following audience:

• Customers

• Partners

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking Digital Experience Installation Manuals

• Oracle Banking Digital Experience Licensing Manuals

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes; actual screens that appear in the application may
vary based on selected browser, theme, and mobile devices.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBDX Oracle Banking Digital Experience

Preface

vi

1
OBDX Servicing Application

This topic provides information on OBDX Servicing Application. This is the main application
for mobile banking.

1.1 Pre requisite
This topic provides information on Pre requisite.

• Download and Install node as it is required to run npm and Cordova commands.

• Latest Xcode to be download from App Store. This document is w.r.t to Xcode 16.2

• OBDX iOS Application is supported on current iOS version and only one version preceding
that.

1.2 Project Setup
This topic provides information on Project Setup.

Ensure Nodejs Version is >= 12 and latest Xcode version available on AppStore is used.

1. Extract iOS workspace from installer and place in a folder.

2. The workspace contains fat xcframeworks for running on devices and simulator both. The
same frameworks within the workspace can we used to run on simulator and device as
well.

3. Below are the frameworks present inside the workspace. Verify if these are present before
running the application on device or simulator.

a. OBDXFramework.xcframework

b. CordovaFramework.xcframework

c. OBDXExtensions.xcframework

d. OBDXWatchFramework.xcframework

4. To run the application, we also need UI for the application. UI can be hosted on the remote
server or on local server machine. The UI pointing to remote server, will be served pointing
to the remote server URL. UI hosted on local machine will be served using localhost/server
IP address.

5. To enable debugging in network tab, set this property “InspectableWebView” to true in
config.xml

6. Also, refer section: Configurations for the IOS application: for configurations required for
the application.

7. Also, apple certificates and provisioning profiles are needed to run the application on
devices. Refer section: Generating Certificates for Development, Production.

1-1

1.3 Create Project Using Remote UI
This topic provides information on Create Project Using Remote UI.

• Update the server URL in app.plist against KEY_SERVER_URL key. This is the URL
where the UI is hosted.

Proceed to section: Configurations for the IOS application.

1.4 Create Project by hosting UI on local server machine
This topic provides information on Create Project by hosting UI on local server machine.

1. Building un-built UI

a. UI is built with webpack hence the built UI cannot be directly modified. Hence, bank
can use unbuilt UI and make the necessary changes and host the UI is below ways:

i. Use local machine as local server and host the UI on local development machine
and connect the application using localhost.

ii. OR host the UI on local OHS development server and point the application to that
server URL.

b. UI is same for internet and mobile, same build process of internet to be followed.

i. Bank can follow the UI build steps from “Oracle Banking Digital Experience User
Interface Guide”.

c. Additionally, for building UI for mobile, Open scripts->webpack->webpack.dev.js and
add below line in devServer object:
as below:

headers: {
"Access-Control-Allow-Origin": "*"
},

SAMPLE:

 devServer:
{
 static:
path.join(__dirname,

 "../../
dist"),
 compress: true,
port:4000,
hot:false,
client:false,
headers:
{
 "Access-Control-Allow-Origin":
"*"
 },

Chapter 1
Create Project Using Remote UI

1-2

d. Also, in webpack.dev.js comment out below lines inside “entry” key

entry: { // main: "framework/js/configurations/require-
config.js", //
Runtime code for hot module replacement //
hot:'webpack/hot/dev-server.js', //
Dev server client for web socket transport, hot and live reload logic//
client:'webpack-dev-server/client/index.js?hot=true&live-//
reload=true',
},

Note:

If banks want to debug UI the update “devtool” configuration. Refer Webpack
documentation https://webpack.js.org/configuration/devtool/ for more
details.

e. Once the UI is built, run below command to start a local server on the development
machine using below command:

• npm run start

• Once this server starts, below is the window which appears. This indicates local
server is started.

• Point the “key_server_url” to http://localhost:4000 and run the application on
simulator. To run on device, the internet proxy should allow localhost domain to
accept incoming requests.
If it is blocked, UI should be built and “npm start” command should be executed on
a OHS development server machine which is accessible in the network. They
“key_server_url” will then point to that local server machine URL.

Chapter 1
Create Project by hosting UI on local server machine

1-3

1.5 Configurations for the IOS application
This topic provides information on Configurations for the IOS application.

Application level configurations are present in ‘app.plist’ (ZigBank/Resources) of the
workspace

Note:

These are configurations for different features. The description of each is in given
below format

Type - Data Type of value

Purpose - Its usage

Value – The possible values

Configurable – Yes if bank can be allowed to change. No if the value is not allowed to be
changed.

1. For SERVER_URLs:
Open Xcode by clicking ZigBank.xcodeproj at zigbank/platforms/ios/

This is mandatory configuration.

Add URLs to app.plist (ZigBank/Resources)

OBDXTOKEN (Token based mechanism)

For more information on fields, refer to the field description table.

Table 1-1 Table: OBDXTOKEN

SERVER_TYPE OBDXTOKEN

KEY_SERVER_URL

WEB_URL
2. For SIRI

a. This configuration is Optional.

b. By default, SIRI capability is set to YES. Bank can disable it.
For more information on fields, refer to the field description table.

Table 1-2 Table: For SIRI

SERVER_TYPE Description

CurrencyCode Type: String

Purpose: Currency code for Siri Payments

Value: Currency Value. Ex: INR

Configurable: Yes
Configurable: Yes

Chapter 1
Configurations for the IOS application

1-4

Table 1-2 (Cont.) Table: For SIRI

SERVER_TYPE Description

SiriRequiredFlag Type: Boolean

Purpose: To enable/disable Siri capability

Value: YES/NO

Configurable: Yes

SIRIDebugEnabled Type: Boolean

Optional. Can be set only if debugging is required in development
mode. Default the value is NO.

Purpose: If we need to debug SIRI flow, this can be set to true.
Refer section on how to configure device to debug SIRI.

Value: YES/NO

Configurable: Yes

c. Siri-Payload.plist

i. This is present in (ZigBank/Resources folder inside IOS workspace.

ii. It) is provided to specify entries in the Siri payload based on transaction types
(internal, domestic).

iii. This is required if bank’s SIRI payment payload differs from what is currently
present in workspace and if bank needs to add certain mandatory fields for the
payload.

iv. By default, SIRI will work with the given payload so no need to change anything in
it.

3. To Enable SSL:

a. Refer section: Enabling SSL pinning in the application on how to configure the
workspace to enable SSL pinning in the application.

b. By default, SSL pinning is NO in the workspace.

Recommended to set to YES for production URLs with a valid authorized SSL
certificate on server.

For more information on fields, refer to the field description table.

Table 1-3 Table: Enable SSL

SERVER_TYPE Description

SSLPinningEnabled Type: Boolean

Purpose: To enable SSL Pinning. SSL checks are performed on
application launch.

Value: YES, for enabling. NO for disabling.

Configurable: Yes

CertificateType Type: String

Purpose: File extension of SSL Pinned certificates

Value: cer

Note: the certificate file added in the workspace should also
have .cer extension

Configurable: Yes

Chapter 1
Configurations for the IOS application

1-5

Table 1-3 (Cont.) Table: Enable SSL

SERVER_TYPE Description

PinnedUrl Type: Array

Purpose: Pinning URL to be entered here. This is the https URL
of the server against which the certificate will be verified. Can add
multiple if required.

Value: https server URL

Configurable: Yes

PinnedCertificateName Type: Array

Purpose: For verification of SSL, this certificate will be pinned in
the application and verified against the server URL.

Value: Houses the certificate name (without extension) of the
pinning certificate. Old certificate (about to expire) and new one
can co-exist.

Configurable: Yes

SSLPinningEnabledNoNet
workCall

Provides the option of whether to load the login page if SSL
Pinning fails. SSLPinningEnabled also must be set to YES for it to
work.

If set to YES and SSLPinningEnabled is set to YES then if SSL
Pinning fails, then login page does not load.

If set to NO and SSLPinningEnabled is set to YES then if SSL
Pinning fails, then login page loads.

Configurable: Yes

EnableSSLPinningForEver
yRequest

Type: Boolean

Purpose: To enable SSL Pinning for every request fired from
application pages in the entire application.

Value: YES, for enabling. NO for disabling.

Configurable: Yes

4. To Enable Force Update:
This is an optional configuration.

Refer section: Enabling Force update on more details on how to configure the workspace
for this.

For more information on fields, refer to the field description table.

Table 1-4 Table: Enable SSL

SERVER_TYPE Description

ForceUpdate Type: Boolean

Purpose: To enable force update feature in the application.

Value: If set to YES, then the application will check for updates from
the Appstore and display a non-dismissing popup. User needs to
forcefully update the application. Default value: NO

Configurable: Yes

AppStoreID Type: String

Purpose: The force update will be checked against this application ID

Value: Enter the ID of the application from AppStore.

Configurable: Yes

Chapter 1
Configurations for the IOS application

1-6

Table 1-4 (Cont.) Table: Enable SSL

SERVER_TYPE Description

AppStoreURL Type: String

Purpose: URL to AppStore redirection on click of update button.

Value: It is set to

https://itunes.apple.com/in/app/id@@AppStoreID?mt=8

Just replace @@AppStoreID to what is set above for ‘AppStoreID’

Configurable: Just update as mentioned above. Do not change the
URL.

itunesUrlForVersionCheck Type: String

Purpose: URL to check application version in AppStore for force
update

Value: It is set to

https://itunes.apple.com/in/app/id@@AppStoreID?mt=8

Just replace @@AppStoreID to what is set above for ‘AppStoreID’

Configurable: Just update as mentioned above. Do not change the
URL.

5. WATCH Application parameters:
Applicable only if Watch target is added in the workspace.

These are optional configurations.

For more information on fields, refer to the field description table.

Table 1-5 Table: WATCH Application parameters

SERVER_TYPE Description

WatchOATCorp Type: Boolean

Purpose: To enable/disable Own Account Transfer through Apple
Watch OBDX application for corporate users only. If set to YES, then
OWN Account Transfer option will be available in the watch
application.

Value: YES, to display the option. NO to hide that option

Configurable: Yes

WatchSnapshot Type: Boolean

Purpose: To enable/disable snapshot capability in Apple Watch
OBDX application. If set to YES, then Snapshot option will be
available in the watch application.

Value: YES, to display the option. NO to hide that option.

Configurable: Yes

WatchLocateUs Type: Boolean

Purpose: To enable/disable ATM Location option in Apple Watch
OBDX application. If set to YES, then ATM Location option will be
available in the watch application.

Value: YES, to display the option. NO to hide that option

Configurable: Yes

Chapter 1
Configurations for the IOS application

1-7

Table 1-5 (Cont.) Table: WATCH Application parameters

SERVER_TYPE Description

WATCHMAXATTEMPTS Type: Number

Purpose: The number of time PIN login is allowed in the watch
application

Value: Defualt is 3. Change the value to which Bank wants to restrict
the PIN invalid attempts. After attempts exhaust, user will be asked to
register the application PIN again.

Configurable: Yes

6. For Displaying Maintenance Page:

a. This is optional configuration. Bank needs to do this if they want to display
maintenance page in case of any server error.

b. By default, a maintenance page html is provided in workspace inside Zigbank-
>Staging->www. If bank needs to reconfigure the content, they can edit this page html.

c. Also, by default, SHOW_MAINTENANCE_PAGE flag is set to YES and error code is
set to 503.
For more information on fields, refer to the field description table.

Table 1-6 Table: Displaying Maintenance Page

SERVER_TYPE Description

SHOW_MAINTENANCE_P
AGE

Type: Boolean

Purpose: To display a maintenance page if server is down.

Value: true to display. If bank doesn’t need any page to be
displayed, it can be set to false. Default is true

Configurable: Yes

MAINTENANCE_PAGE_S
TATUS_CODE

Type: Array

Purpose: To set the status code for which maintenance page is to
be displayed. This will be used only if
“SHOW_MAINTENANCE_PAGE” value is true.

Value: status code to be checked (E.g. 503, 504 etc) Default value
is 503. Bank can set only one value or multiple status codes if
required.

Configurable: Yes

Note:

Note: If UI is built and copied into workspace as local UI (by using section
2.5), and bank wants to use maintenance page, then additional changes are
required as below:

d. No need to do these changes if the UI remotely hosted.

i. In app.plist, add and additional property “MAINTENANCE_PAGE_URL” as String
and set the maintenance page URL which needs to be displayed when server is
down.

Chapter 1
Configurations for the IOS application

1-8

ii. Open index.html and add below code in script tag as below:

<script type="text/javascript" charset="utf-8">
function init()
 {
var
maintenancePageUrl,maintenancePageStatusCode,showMaintenancePage;

 var server_url = "http://ofss-
mum-715.snbomprshared1.gbucdsint02bom.oraclevcn.com:17777"
 var home_html =
 "?ojr=home";
 var url = server_url + "/" + home_html;

plugins.appPreferences.fetch(MAINTENANCE_PAGE_STATUS_CODE_SUCCESS,
error,'MAINTENANCE_PAGE_STATUS_CODE');
 plugins.appPreferences.fetch(SHOW_MAINTENANCE_PAGE_SUCCESS,
error, 'SHOW_MAINTENANCE_PAGE'); function
 MAINTENANCE_PAGE_URL_SUCCESS(value)
{
maintenancePageUrl = value;
 showMaintenance();
}
function MAINTENANCE_PAGE_STATUS_CODE_SUCCESS(value)
{
 maintenancePageStatusCode = value;
} function
 SHOW_MAINTENANCE_PAGE_SUCCESS(value)
{
var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function()
{
if (xmlhttp.readyState === 4)
{
if (maintenancePageStatusCode.includes(xmlhttp.status) && value)
{
 plugins.appPreferences.fetch(MAINTENANCE_PAGE_URL_SUCCESS,
error,'MAINTENANCE_PAGE_URL');

 }
 }
 }
 xmlhttp.open("GET", url, true);
 xmlhttp.send();
}
function error(err)
 {
 console.log(err);
}
showMaintenance = function()
{
 var xmlhttpMaintenance = new XMLHttpRequest();

 xmlhttpMaintenance.onreadystatechange = function ()
 {
 if (xmlhttpMaintenance.readyState ===

Chapter 1
Configurations for the IOS application

1-9

4)
{
 document.getElementById("obdx-dashboard").style.display
="none";
document.getElementById("showMaintenancePageid").innerHTML =
this.responseText;
 }
 };
 xmlhttpMaintenance.open("GET", maintenancePageUrl,
true);
 xmlhttpMaintenance.setRequestHeader("Cache-Control", "no-
cache, no-store, max-age=0");
 xmlhttpMaintenance.send();
 }
}
</script>

iii. In the body tag add onload="init();" attribute.

iv. Update the server_url in the above script to bank’s server url

7. COMMON CONFIGURATIONS
For more information on fields, refer to the field description table.

Table 1-7 Table: COMMON CONFIGURATIONS

SERVER_TYPE Description

XcodeBuildVersion Build version with which the workspace is built with.

Configurable: No

PatchSetVersion Version of the. OBDX application to identify the version of the
workspace inside the patch installer.

SUITENAME Group identifier for sharing keystore information.

This Should match the app group added in the profile and in Targets-
>Signing Capabilities.

App Groups are linked with the provisioning profile and its value can
be verified from the Zigbank target->Signing Capabilities.

This value is important for the secured storage of the information.

Configurable: Yes

BankName Name of bank to be shown on touch id / face id popup

Configurable: Yes

DomainDeployment To be always set YES for token-based development.

Configurable: No

8. For CHATBOT

• This is optional configuration. Bank needs to do this if Oracle Digital Assistant (ODA) is
supported in their workspace.

• Adding chatbot support to mobile application refer section: ODA Chatbot Inclusion.

• Refer section: ODA Chatbot Inclusion for more details.

• Below details can be obtained from the Oracle Digital Assistant portal.
For more information on fields, refer to the field description table.

Chapter 1
Configurations for the IOS application

1-10

Table 1-8 Table: COMMON CONFIGURATIONS

SERVER_TYPE Description

CHATBOT_ID The tenant ID

CHATBOT_URL The web socket URL for the Chat application in ODA portal

9. For location tracking metrics

a. This is optional. Bank needs to do if they need location tracking metrics for monitoring
location-based data.

For more information on fields, refer to the field description table.

Table 1-9 Table: Location tracking metrics

SERVER_TYPE Description

ALLOW_LOCATION_SHAR
E

By default, the value is false. If set to true, user will get location
permission prompt to allow location tracking. It can be enabled if
user’s location needs to be tracked.

10. For displaying “Rate Us” to redirect to Appstore page

a. This is optional. User can have an option (“Rate Us”) in settings to display App Store
rating for the application. This option can be enabled/disabled from UI. Also, on click of
the option, to open AppStore page for the application set below value.
For more information on fields, refer to the field description table.

Table 1-10 Table: Displaying “Rate Us” to redirect to Appstore page

SERVER_TYPE Description

AppStoreURL Replace @@AppStoreID with that of the application.

1.6 Enabling SSL pinning in the application
This topic describes the systematic instruction to Enabling SSL pinning in the application
option.

SSL pinning is required to securely connect with a https bank server URL to mitigate Man-in-
middle-attack. It is recommended to enable this in production. By default, SSL pinning is set to
NO in the application for development purpose so that the application can connect to https
URLs without SSL Pinning checks.

Note: OS by default checks for a valid SSL trusted certificate using App Transport Security
(ATS). Hence, the server should have a valid certificate chain and adhere to ATS
requirements. SSL pinning is additional security measure as per security standards.

1. To enable SSL pinning, bank needs to follow the configurations mentioned in the section:
Configurations for the IOS application.

2. The SSL certificate needs to be added in the workspace. To download and add this
certificate, follow below steps:

• Open bank’s https website in Safari on Mac machine

• The website will display a lock icon in the address bar next to the URL.

• Click on that lock icon. It will display a window as below:

Chapter 1
Enabling SSL pinning in the application

1-11

• Click on Show certificate and below window will be displayed

• Press and drag the certificate icon from Safari to any location on your machine.

• Rename it to any certificate.cer

• Copy-paste the certificate inside IOS workspace at this location

/service/workspace_installer/zigbank/platforms/ios/ZigBank/

• Right Click on Resources folder and select “Add Files to Zigbank”

• Select the certificate file which is saved in above step.

• Select ZigBank target

• The certificate will be added in the Resources folder.

• Copy the name and add it in the app.plist against
@@PINNING_CERTIFICATE_OLD_1 for PinnedCertificateName as shown below.
Refer configuration section for this key information.

Chapter 1
Enabling SSL pinning in the application

1-12

Note:

Since this is an array, bank can add multiple certificates for
@@PINNING_CERTIFICATE_OLD_1,
@@PINNING_CERTIFICATE_OLD_2. Order doesn’t matter..

Also, since SSL certificate are renewed after the expiry
@@PINNING_CERTIFICATE_NEW_1 and @@PINNING_CERTIFICATE_NEW_2
options are provided.

These are the corresponding new certificate names which can be added by the bank
when the old certificates are about to expire and release this version of application to
Appstore before the old certificate expires. This will allow that the application continues
to work with SSL pinning even after old certificate has expired. Same activity bank can
continue to do for every year before old certificate expires.

• To add the new certificates in workspace, bank must follow same steps as mentioned
above

• After the certificates are configured, next step is to set ‘PinnedUrl’ key in the app.plist.
Refer configuration section for this key information. Add the https URL against which
the certificates are to be verified. If there are multiple site certificates added, then bank
must set all those URLs in each item as below:

1.7 Enabling Force update
This topic provides information on Enabling Force update.

• This is an optional configuration.

• When a new version of the application is available on AppStore, user should be notified to
upgrade their application. This flag will check the update and display a non-cancellable
popup message to the user to update their application.

• For this to happen, enable this flag and other values as mentioned in the configuration
section .Configurations for the IOS application:

• Set the version for the new update in “Bundle version string (short)” in ZigbankInfo.plist
and in marketing version in Watch target->Build Settings. (Watch target setting is only
required if Watch target is present for bank in its workspace.

Chapter 1
Enabling Force update

1-13

Note:

Bundle version string format should be same as that of the AppStore version set
on iTunes developer portal. If Bank is uploading AppStore version 1.0 then the
bundle version should be 1.0 and so on.

• So, if live app version is 1.0.1, the new application update can have version greater that
1.0.1 which can be either 2.0 or 1.0.2 or 1.1.0 or 1.1.1 etc. Once this new version is
released to Appstore, the application already installed on user’s device will compare the
installed version with new updated version.

• If updated version is available, then below popup will be displayed.

On clicking the button, user will be redirected to the Appstore page of that application.
(Ensure to set correct AppStoreID in the configuration for this redirection)

• The popup header text and message can be configured in “Localizable.strings” file inside
Classes folder in the workspace for below keys:

Header – APP_UPDATE_HEADER
Message - APP_UPDATE_TEXT
Button text- APP_UPDATE_BTN_TEXT

• This feature will work only after from the time the users install the version which has this
logic enabled. Ex: If bank has 1.0 in Appstore for which this flag as false and bank releases

Chapter 1
Enabling Force update

1-14

1.1 in Appstore with this flag enabled, then user needs to install the 1.1. application
manually. Since 1.0 didn’t have that flag enabled, it will not check for any updates.
However, every future release made to Appstore will check for any updates and display the
force update popup.

1.8 Device Registration and Push Registration Functionality
This topic provides information on Device Registration and Push Registration
Functionality.

1. In this version, only one device is allowed to be registered for alternate login for the same
username. If user tries to register another device with same username for alternate login,
then the previous registration on other devices will be removed. User will get an error
message if he/she tries to use PIN/PATTERN/FACE on the de-registered devices.

2. While user registers his second device or same device again (by re-installing the
application), a popup will appear to notify the same.

3. If user confirms, then the current device will be registered, and all previous registrations
will be removed.

If user cancel, the process is exited.

4. Also, in this version, only one device is allowed to be registered for push.

5. Bank can allow multiple devices to be registered for same username in their setup by
setting below two configurations in config table.:

6. ALLOWED_DEVICE_COUNT to any value between than 1 and 100.

• 1 will allow on one device registration.

Chapter 1
Device Registration and Push Registration Functionality

1-15

• 100 will allow more than one device registration.

7. ALLOWED_PUSH_DEVICE_COUNT any value between 1 and -1

• 1 will only one device to be registered for push.

• -1 will only multiple devices to be registered for push.

1.9 Generating Certificates for Development, Production
This topic describes the systematic instruction to Generating Certificates for Development,
Production option.

1. This is required for running the application on device for debugging, testing as well for
releasing the application to Appstore.

2. Bank can refer to Apple’s documentation on how to create certificates and provisioning
profiles.

3. Create all certificates (by uploading CSR from keychain utility), provisioning profiles and
push certificates by login in developer console.

Below are steps:

1. Certificate Creation

2. AppID creation

3. Profile creation

4. Adding device UUIDS to profiles

5. Generating Push certificate for server

Certificate Creation: Below is the screen on apple developer portal where bank needs to create
distribution and Development certificates.

AppID creation: Below is the screen where bank needs to create appIDs for each target bank
has configured in workspace. Available targets are

ZigBank

Chapter 1
Generating Certificates for Development, Production

1-16

OBDXSiriExtension

OBDXSiriExtensionUI

ObdxImessageExtension

OBDXWatchApp

OBDXWatchApp Extension

AccountsWidgetExtension

NotificationService

1. Add capabilities as shown below and ensure the bundle identifier matches with the
capabilities added in Xcode.

2. Ensure AppGroups capability is added to all profiles and for appIDs.

3. Ensure SiriKit, App Groups, Push Notifications, Associated domain capabilities are added
in Zigbank appIDs.

4. Bank can refer base workspace for the naming convention followed for bundle identifier for
each target. Below are the appIDs which we need for OBDX application in similar format
as below:

Chapter 1
Generating Certificates for Development, Production

1-17

Profile Creation:

Select appropriate AppIDs to relevant profile and appropriate certificates.

Example: AccountWidget development profile will have development certificate and appId
created for AccountWidget. Likewise for other targets.

Chapter 1
Generating Certificates for Development, Production

1-18

Bundle identifiers need to be added in the Info.plist of each frameworks. Example: if bank’s
appId for Zigbank is com.ofss.digx.obdx.zigbank then follow below steps

1. Right click on OBDXFramework.framework(in Xcode’s Project Navigator) -> Show in
Finder

2. When the finder directory opens the right click OBDXFramework.xcframework -> select
ios-arm64 -> Select OBDXFramework.framework

3. Open Info.plist and set Bundle identifier as
com.ofss.digx.obdx.zigbank.abc.def.ghi.jkl.OBDXFramework

4. Repeat the steps for the other three frameworks as well, with the following values:
Bundle identifier for Cordova.framework : com.ofss.digx.obdx.zigbank.Cordova

Bundle identifier for OBDXExtensions.framework :
com.ofss.digx.obdx.zigbank.OBDXExtensions

Bundle identifier for OBDXWatchFramework.framework :
com.ofss.digx.obdx.zigbank.OBDXWatchFramework

Set the identifier in the Signing Capabilities tab in Xcode for each target.

1. Open Xcode project in Xcode and select each target and go to Signing and Capabilities
and update correct bundle identifier for each target.

2. Example if main target bundle identifier is “com.ofss.digx.obdx.zigbank” then each target
should have below format for bundler indentifiers
OBDXSiriExtensionSiri – com.ofss.digx.obdx.zigbank.OBDXSiriExtension

OBDXSiriExtensionUI – com.ofss.digx.obdx.zigbank.OBDXSiriExtensionUI

ObdxImessageExtension– com.ofss.digx.obdx.zigbank.ObdxImessageExtension

OBDXWatchApp – com.ofss.digx.obdx.zigbank.watchkitapp

OBDXWatchAppExtension-com.ofss.digx.obdx.zigbank.watchkitapp.watchkitextension

AccountsWidgetExtension – com.ofss.digx.obdx.zigbank.AccountsWidget

NotificationExtension- om.ofss.digx.obdx.zigbank.OBDXNotificationExtension

Adding device UUIDS to profiles

Chapter 1
Generating Certificates for Development, Production

1-19

1. For development profiles, testing device UUIDs need to be added, and same devices need
to be selected in the development profile.

Generating Push certificate for server

To set up an APNs certificate on your server, bank will need to generate a Certificate Signing
Request (CSR), upload it to Apple's Push Certificates Portal, download the resulting certificate,
and then install it on your server, along with the necessary root certificates for secure
communication

Select appropriate AppIDs to relevant profile and appropriate certificates. E.g. AccountWidget
target will have development certificate with appId created for AccountWidget if development
type profile is created. Like wise for other targets.

1.10 Setup for Push Notification in the application
This topic describes the systematic instruction to Setup for Push Notification in the
application option.

1. Push notification services are to be created using .p8

2. For p8, bank needs to setup Key and update database with the details. All details are
mentioned below:

3. Create APNS key from developer portal. Navigate to the “Keys” section and create APNS
key.

Note:

APNS key and download the .p8 file. We need the contents of this file to update
in database.

Chapter 1
Setup for Push Notification in the application

1-20

Below are the configurations to be done at database level:

1. For more information on fields, refer to the field description table.

Table 1-11 Below are the configurations to be done at database level:

SR
NO

Table PROP_ID CATEGORY_ID PROP_VALUE Purpose

1 DIGX_FW_CONFIG_
ALL_B

APNSKeyStore DispatchDetails DATABASE Specifies
whether to pick
certificate
password

2 DIGX_FW_CONFIG_
ALL_B

APNSCertKeyS
tore

DispatchDetails DATABASE

3 DIGX_FW_CONFIG_
ALL_B

proxy DispatchDetails <protocol,proxy
_address>

Provides proxy
address, if any,
to be provided
while
connecting to
APNS server.
Delete row if
proxy not
required.
Example:
HTTP,148.50.60
.8,80

4 DIGX_FW_CONFIG_
ALL_B

CERT_TYPE DispatchDetails For dev push
add a row with
value ‘dev’

Possible values
for Dev:

a. dev

For Production:

a. prod

For prod push
this row is not
required as it
takes prod by
default

Chapter 1
Setup for Push Notification in the application

1-21

Table 1-11 (Cont.) Below are the configurations to be done at database level:

SR
NO

Table PROP_ID CATEGORY_ID PROP_VALUE Purpose

5 DIGX_FW_CONFIG_
VAR_B

APNS_BUNDL
E

Eg.
com.ofss.digx.o
bdx.zigbank

Bundle Name

(Update for all
entities)

6 DIGX_FW_CONFIG_
VAR_B

APNS_TEAMID Eg.
3NX1974C93

Team ID of
Apple developer
account

(Update for all
entities)

For more information on fields, refer to the field description table.

Table 1-12 Below are the configurations to be done at database level:

SR
NO

Table PROP_ID CATEGORY_ID PROP_VALUE Purpose

1 DIGX_FW_CONFIG_
VAR_B

APNS DispatchDetails <Key ID> Provides key
of .p8 certificate

2 DIGX_FW_CONFIG_
ALL_B

CERT_TYPE DispatchDetails For dev push
certs add row
with value ‘dev’

For prod push
certificates this
row is not
required

3 DIGX_FW_CONFIG_
VAR_B

APNSCert Open the .p8
file and copy
contents and
convert it to
base 64 and
update the base
64 value to
column

Copy the entire
string convert it
to base64 string
online and then
update the base
64 value in the
column

Open the .p8
file and copy
contents and
convert it to
base 64 and
update the base
64 value to
column

1.11 Push Notification Actionable Alerts Configuration
This topic provides information on Push Notification Actionable Alerts Configuration.

To enable deep linking with actionable alerts make the following changes on the server end to
the push notifications payload:

1. Send the “category" as “pac”.

2. Send the required deep-linking URL in “SUMMARY_TEXT”.

Chapter 1
Push Notification Actionable Alerts Configuration

1-22

1.12 Push Notification 2FA configuration
This topic provides information on Push Notification 2FA configuration.

1. This is 2fa authentication set for any transaction. With the setup, whenever any user
initiates any transaction, they will receive a push notification on the registered device. They
have to click on the notification to accept/reject the transaction. Based on the action, the
transaction will be proceeded.

Note:

PUSH notifications are received only if user has allowed push notification when
the application was installed and logged in the mobile application for the first
time.

2. If user disallows the notification when the application for installed for the first time., they will
not receive any push notifications on their devices.

3. If Push notification 2fa is enabled at bank side for any transaction then, the screen displays
message to wait for the push notification to accept/reject the transaction authentication.
The message displayed on the text as well contains a timer of 5 minutes displayed on the
UI. This value is set in the UI code. If bank needs to change this value, bank needs to
update the value in UI code:
File path: channel/metadata/user-components/push-out-of-band/push-out-of-band/hook.js

Code to be changed: const mins = <<value>>;

Update the value to what bank needs to set it. This value is in minutes.

So, ideally 5 minutes (existing value in base UI code) is an ideal time. Any changes made
in this value should satisfy below pre-condition.

4. There is an OTP expiration time set in “digx_fw_config_ALL_b” table.

5. Also, there is business policy check set to 10 minutes for validation of the generated 2fa
token. Bank can write their own business policy where they can modify the 10 minutes
time.
So, the time in UI code should not exceed 10 minutes and OTP expiration time in
“digx_fw_config_ALL_b” table.

1.13 ODA Chatbot Inclusion
This topic describes the systematic instruction to ODA Chatbot Inclusion option.

To enable ODA Chatbot services in the mobile app, the following changes needs to be made:

1. the folder "cordova-plugin-chatbot" from the SVN path : workspace_installer/
AppExtensions/ODAChatbot. The frameworks can be found at ODA Client SDK for iOS
x.y.z - Latest in https://www.oracle.com/downloads/cloud/amce-downloads.html#license-
lightbox . After downloading and unzipping the latest version the frameworks for device
and simulator as single file – “BotClientUISDK.xcframework” and
“Starscream.xcframework”. Frameworks to be chosen as per the target and pasted inside
"cordova-plugin-chatbot".

2. Copy the folder "cordova-plugin-chatbot" from the SVN path : workspace_installer/Zigbank/
plugins. A screenshot of the destination in Finder is attached herewith.

Chapter 1
Push Notification 2FA configuration

1-23

3. Open the Zigbank.xcodeproj file, right click on "Plugins" folder and select "New Group"
option. Name the group as "cordova-plugin-chatbot".

4. Right click on the newly created group and select "Add files to "Zigbank"" option, and add
all the contents of "cordova-plugin-chatbot" folder, pasted previously.

Chapter 1
ODA Chatbot Inclusion

1-24

5. After addition of the files, go to "General" tab for "Zigbank" target and under the
"Frameworks, Libraries and Embedded Content" section change the embed type of the
frameworks "Starscream.xcframework" and "BotClientUISDK.xcframework" to "Embed and
Sign". Failing to do so will make the app crash after installation.

1.14 Widget Functionality
This topic describes the systematic instruction to Widget Functionality option.

Widgets are IOS native feature. Below widgets are available in the application

(Refer functional doc - User Manual Oracle Banking Digital Experience Quick
Snapshot.pdf)

Chapter 1
Widget Functionality

1-25

1. All Accounts Widgets – Widget, showing top 3 account balance.

2. Account Details Widget - Widget, showing account balance of default account and last 3
transactions of the same account, can be added to the phone home screen. If default
account is not set, then the details of the account fetched first is shown.

3. Multi-Functional Widget – Widget showing default account balance. If default account is
not present, it shows details of account fetched first. Additionally, it has option to scan to
pay feature , transfer money, credit account overview and investment overview.

4. Scan to Pay Widget – Widget which allows to scan to pay.

Prerequisite :

Quick Snapshot feature needs to be enabled in the application from the login screen.

(Refer functional doc - User Manual Oracle Banking Digital Experience Quick
Snapshot.pdf)

If bank doesn’t need this feature, then can do below steps:

Removal of Widget functionality from workspace :

To remove the widget functionality from workspace please carry out the following steps:

1. Please delete “AccountsWidgetExtension” from the “Targets” section.

2. Delete “AccountsWidgetExtension.entitlements” file and “AccountsWidget” folder from
Project navigator.

Chapter 1
Widget Functionality

1-26

1.15 Scan to Pay from Application Icon
This topic describes the systematic instruction to Scan to Pay from Application Icon option.

Users can long press on bank’s application icon on home screen and click on scan-to-pay
option to scan QR and make payments.

1. This option is not RTM controlled hence to remove this option if bank doesn’t need it, then
open Zigbank project in Xcode, open ZigBank-Info.plist. Delete entry for key – “Home
Screen Shortcut Items”.

Chapter 1
Scan to Pay from Application Icon

1-27

1.16 Passkey (Passwordless login)
This topic describes the systematic instruction to Passkey (Passwordless login) option.

Passkey is passwordless login is introduced in latest IOS ecosystem (iOS devices, Safari) and
Android devices and on latest browsers.which allows users to login securely without entering
username and password.

IOS passkeys are shared in iCloud keychain. Hence iCloud Keychain should be enabled by the
users on their apple ID on iOS device.

System requirements: Attached is the compatibility chart for passkeys to work:

Browsers should also be latest versions supporting WebAuthn protocols.

Note:

Only one of two login types can exist in the application, Either passkey or alternate
(PIN/Pattern/FaceId/touchID). So, setup this option for brand new application update
in the market. If the application is already launched and users have enabled alternate
login, then enabling passkey option in later application versions will hide the alternate
login options from the application and user will have an option to register passkey in
his profile settings.

To disable this option

By doing this, passkey option will not be available to users within the application. User will not
be able to register for passkey and will not be able to login using passkey. Follow below steps:

1. Remove RTM access from Client Servicing → Authentication → Passkey Setup for Mobile
Application, Mobile (Responsive) and Internet touch points

Chapter 1
Passkey (Passwordless login)

1-28

To enable this option:

• Add RTM access from Client Servicing → Authentication → Passkey Setup for Mobile
Application,Mobile (Responsive) and Internet touch points

• Set this flag in channel-framework-js-configurations-config.js to true
thirdPartyAPIs → passkey → required → false

• Open Zigbank project in Xcode, Select Zigbank target -> Signing Capabilities -> Delete
Associated domain

TO ENABLE THIS OPTION:

1. Add RTM access from Client Servicing → Authentication → Passkey Setup for Mobile
Application,Mobile (Responsive) and Internet touch points

2. Set this flag in channel-framework-js-configurations-config.js to true
thirdPartyAPIs → passkey → required → true

3. Along with above, we need below server side and application side setup

Server-Side Setup:

1. Update the relying party in below property

select prop_value from digx_fw_config_all_b where prop_id='PASSKEY_RP_ID'

Note:

Relying partId is the domain name of the website to which credentials will be
associated. (Eg google.com, example.com etc)

Hosting AASA file (Apple-app-site-association) on server.

Chapter 1
Passkey (Passwordless login)

1-29

1. AASA- Apple App Site Association fille which IOS installs on the device when application is
installed. This AASA file is hosted on our server for testing and then apple stores that file to
its APPLE CDN when application is released on Appstore.

2. This file is fetched by Apple after a duration of 5 days. So, any new update in the file takes
5 days to gets reflected in the application. In development mode though, every application
installation, the AASA file is re-fetched on device.

There are two parts for the AASA file setup – Server side and application side.

Server-Side AASA Setup:

1. AASA file needs to be on https server with valid SSL certificate.

2. Update properties in digx-admin.war → com.ofss.digx.app.sms.service.jar → resources/
IphoneApplink.properties
Below are the sample values for a single application supporting deep link. Bank must
update banks’ teamID and bundle ID.

numberofapps=1
appid0=3NXJ972C93.com.ofss.digx.obdx.zigbank <Add bank’s
teamID.bundleID>paths0=*

3. Need to change host and port in Obdx.conf
ProxyPass "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

ProxyPassReverse "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-
known

4. After the setup is done, this ASA file must be accessible on mobile browser with this URL.
There should not by any redirects for accessing this file.
https://<host>/.well-known/apple-app-site-association

The output should be as below

{
 "webcredentials":
{
 "apps":
[
 "3NXJ972C93.com.ofss.digx.obdx.zigbank"
]
 }
}

Application side.setup:

1. Open developer portal and enable Associated domain for your appID

Chapter 1
Passkey (Passwordless login)

1-30

2. Open Zigbank.workspace- Select Zigbank target. Go to Signing and Capabilities – In
associated domain section, update the url with bank’s host for webcredentials key.
Example. Replace ofss-mum-2524.snbomprshared1.gbucdsint02bom.oraclevcn.com?
mode=developer with banks host where the ASA file is hosted. Port and “https” should not
be added here.

Note:

In webcredentials value “?mode=developer” is only for development mode and
testing on TestFlight. Hence for development with this mode, we can test only
with developer profile.

Once app is ready for distribution to Appstore, ?mode=developer should be removed while
archiving for app store release.

How to test on device in development/testing phase.

1. Developer mode should be enabled on IOS device

2. iCloud keychain should be enabled for AppleID configured on the device. Settings →
profile → iCloud → Passwords and Keychains → Sync this iPhone

3. Go to Settings → Passwords → Password Option → Check Auto ill option is enabled

1.17 Deep linking - To open reset password, claim money links
with the application

This topic provides information on Deep linking - To open reset password, claim money
links with the application.

1. Deep linking in IOS works with https URL and a valid ASA configuration. Deep linking
keeps the application flow within the application when user clicks on bank’s reset-
password or claim-money link on email or message.

2. AASA- Apple App Site Association file which OS installs on the device when application is
installed. This AASA file is hosted on our server for testing and then apple stores that file to
its APPLE CDN when application is released on Appstore.

3. This file is fetched by Apple after a duration of 5 days. So, any new update in the file takes
5 days to gets reflected in the application. In development mode though, every application
installation, the AASA file is re-fetched on device.

4. This is optional setup. If bank wants deep linking, then below steps to setup AASA file.

5. If Bank doesn’t want to set this up, do not follow below steps to setup AASA file. Also,
open Zigbank project in XCode, Select Zigbank target → Signing Capabilities → Delete
Associated domain

Chapter 1
Deep linking - To open reset password, claim money links with the application

1-31

AASA SETUP:

There are two parts for the setup – Server side and application side.

Server Side AASA Setup:

1. AASA file needs to be hosted on https server with valid SSL certificate. There should be no
rediection to this file.

2. Update properties in digx-admin.war → com.ofss.digx.app.sms.service.jar → resources/
IphoneApplink.properties
Below are the sample values for a single application supporting deep link. Bank should
update banks’ teamID and bundle ID.

3NXJ972C93.com.ofss.digx.obdx.zigbank In this 3NXJ972C93 is the team Id and
com.ofss.digx.obdx.zigbank is bundle identifier. So the format is
<TEAM_ID>.<bundleIdentifier>

Team ID is present in developer account in membership details

numberofapps=1
appid0=3NXJ972C93.com.ofss.digx.obdx.zigbank <Add bank’s
teamID.bundleID>
 paths0=*

3. Need to change host and port in Obdx.conf
ProxyPass "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

ProxyPassReverse "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-
known"

4. After the setup is done, this AASA file must be accessible on mobile browser with this
URL. There should not by any redirects for accessing this file.
https://<host>/.well-known/apple-app-site-association

The content output should be as below:

{
 "applinks":{
 "apps":[

],
 "details":[
 {
 "appID":"3NXJ972C93.com.ofss.digx.obdx.zigbank",
"appIDs":
["3NXJ972C93.com.ofss.digx.obdx.zigbank"
],
"components":[
{
"comment":"Match",
"/":"*"
}
],
"paths":[
"*"
]
 }
]
 },

Chapter 1
Deep linking - To open reset password, claim money links with the application

1-32

 "activitycontinuation":{
 "apps":[
 "3NXJ972C93.com.ofss.digx.obdx.zigbank"
]
 }
}

Application side.setup:

1. Open developer portal and enable Associated domain for your appID

2. Open Zigbank.workspace → Select Zigbank target. Go to Signing and Capabilities → In
associated domain section, update the URL with bank’s host for activitycontinuation and
applinks.
Example: Replace ofss-mum-2524.snbomprshared1.gbucdsint02bom.oraclevcn.com?
mode=developer with banks host where the ASA file is hosted. No port and https to be
added here.

Note:

In applinks and activitycontinuation “?mode=developer” is only for development
mode and testing on TestFlight. Hence for development with this mode, we can
test only with developer profile.
Once app is ready for distribution to AppStore and the TestFlight, ?
mode=developer should be removed.

Chapter 1
Deep linking - To open reset password, claim money links with the application

1-33

3. Update the key_server_url to https URL in the Zigbank project app.plist

Device Side setup for development and testing:

1. To test on device, Developer mode should be enabled. Additionally, goto Phone Settings
→ Developer mode → Enable “Associated domain Development”.

2. With all above setup, install the application on the device. Not while installing the device
must be connected to network in which the AASA file is accessible.

3. Under Settings → Developer Option → Goto Diagnostics → Add your server url like below
and check if device can identify this link as deep link.
If all setup is correct and AASA file is successfully installed on device, this will display a
valid url as below

Example: In screenshot below, we have added our server url which is also the url where
AASA file is hosted.

https://ofss-mum-2524.snbomprshared1.gbucdsint02bom.oraclevcn.com/

Chapter 1
Deep linking - To open reset password, claim money links with the application

1-34

If we see below message, then deep link can be tested on this device

4. Send the link for reset-password/claim money in mail or copy the link and save the link in
phone’s notepad. The link should be a https url where the AASA is hosted and should not
contain port.

Chapter 1
Deep linking - To open reset password, claim money links with the application

1-35

5. Long press on the link and you must see “Open in Zigbank App” option. Clicking the option
page opens in the application.

1.18 Changing App Icons and Assets
This topic provides information on Changing App Icons and Assets.

1. All the app icons for all sizes and AppStore icon needs to replaced in Images.xcassets file
under Zigbank → Resources folder.

2. The launch images to be added in Images.xcassets file under Zigbank → Resources
folder.

3. The application as well shows splash images when application goes in background. These
images are present in Zigbank → Classes folder with names prefixed “Default-“. Replace
all 4 images with appropriate size.

1.19 Archive and Export
This topic describes the systematic instruction to Archive and Export option.

1. In the menu bar, click on Product → Archive (Select Generic iOS Device).

2. After archiving has successfully completed. Following popup will appears.

Chapter 1
Changing App Icons and Assets

1-36

3. Click on Distribute App in the right pane of the popup → select the Method of
Distribution → Select Distribute. Review the contents and click on Export → Export
and generate the. ipa

a. There are multiple options for exporting, select according to what is needed.

b. Debugging – this will create an ipa with development profile for internal testing.

c. Release Testing – This will create an ipa with Ad Hoc distribution profile for adHoc
testing.

d. TestFlight Internal Only, TestFlight & AppStore- As the name suggests, this is for
TestFlight and AppStore release.

Chapter 1
Archive and Export

1-37

This is window which appear after selecting Debugging option. Note the Certificate and
provisioning profile is for development.

4. Click on Export and it will ask to save the ipa. Select the location and click on Export. This
ipa will be development ipa which can be installed on devices which are added in the
profiles on developer account.
Below is the window which appears after selecting “Release Testing”. Note here the
Certificate and Profile is of Adhoc Distribution.

Chapter 1
Archive and Export

1-38

Follow the above steps to Export and save the ipa. This ipa will be adhoc distribution ipa.

Chapter 1
Archive and Export

1-39

2
OBDX Authenticator Application (Futura
Secure)

This topic provides information on OBDX Authenticator Application (Futura Secure).

1. This is an Authenticator Application which is used when bank has enabled Soft Token
Authentication as Authentication mechanism for any transaction. This application basically
supports one of below authentication:

• HOTP: Random based Soft Token

• TOTP: Time based Soft Token

2. Users should have this application installed and logged in and PIN is set before initiating
any transaction for 2fa.

3. Based on the configuration set, user can any time log in with PIN and check the token and
use that token for completing any transaction based on “Soft Token Authentication”

Pre-requisite:

• Download and Install node as it is required to run npm and cordova commands.

• Latest Xcode to be download from Mac App Store. This document is w.r.t to Xcode 16.2

• Authenticator Application is supported only on current iOS version and only one version
preceding that.

2.1 Authenticator UI (Follow any one step below)

2.1.1 Using Built UI
This topic provides information on Using Built UI.

For TOKEN-BASED - Unzip dist.tar.gz directory from
OBDX_Patch_Mobile\authenticator\TOKEN-BASED

1. Copy the contents from the dist inside Authenticator workspace -> platform/ios/www folder

2.1.2 Using unbuilt UI
This topic provides information on Using unbuilt UI.

• Extract authenticator_ui.tar.gz from OBDX_Patch_Mobile\authenticator\unbuilt_ui. Copy
the “token-based/login” folder and replace it at the “components/modules/” location. This
will replace the existing the login folder.

• Copy the contents except _build folder to Authenticator workspace->platform/ios/www
folder

2-1

2.1.3 Building UI Manually
This topic provides information on Building UI Manually.

1. Extract authenticator_ui.tar.gz from OBDX_Patch_Mobile\authenticator\unbuilt_ui.
The folder structure is as shown :

 sudo npm install -g grunt-cli
 sudo npm install
 node render-requirejs/render-requirejs.js

 sudo npm install -g grunt-cli
 sudo npm install
 node render-requirejs/render-requirejs.js
 grunt authenticator --verbose

Token Based Authentication Mechanism

a. Copy the “token-based/login” folder and replace it at the “components/modules/” [in ui
folder] location. This will replace the existing the login folder.

b. Open the terminal at “_build” level.

c. Run the following commands:

 sudo npm install -g grunt-cli
sudo npm install
node render-requirejs/render-requirejs.js
grunt authenticator --verbose

d. After running above commands and getting result as “Done, without errors.” A new
folder will be created at “_build” folder level with name as “dist”.

Chapter 2
Authenticator UI (Follow any one step below)

2-2

2.2 Authenticator Application Workspace Setup
This topic describes the systematic instruction to Authenticator Application Workspace
Setup option.

1. Unzip and navigate to iOS workspace as shipped in installer.

2. Open the workspace as shown below and find and replace the following generated UI files
from “ui/dist” folder :

• components

• css

• framework

• images

• pages

• resources

Chapter 2
Authenticator Application Workspace Setup

2-3

3. Double click on OBDXSecureAuthenticator.xccodeproj to open the project in Xcode.

4. Update HOTP or TOTP in above screenshots and update the server URL.

5. shared_server_url_url = <bank’s https url>

6. Set value of max_no_attempts to value greater than 0.
Server_type - OBDXTOKEN

7. DOMAIN_BASED_CATEGORIZATION – YES

8. Create certificates and profiles on Apple Developer account. Use the bundle identifier in
project settings and select appropriate profile in the application

9. Bundle identifiers needs to be added in the Info.plist of each the frameworks

10. For example, let us assume that the bundle identifier used is abc.def.ghi.jkl. The steps to
be followed are,

a. Right click on ObdxAuthenticator.xcframework(in Xcode’s Project Navigator) → Show
in Finder

b. When the Finder directory click on ios-arm64 folder → ObdxAuthenticator.framework.

c. Open Info.plist and set Bundle identifier as abc.def.ghi.jkl.ObdxAuthenticator

d. Follow same for Cordova.xcframework and set Bundle identifier for
Cordova.framework : abc.def.ghi.jkl.Cordova

11. Also, set the identifiers and select appropriate profile in the target → Signing & Capbilities
tab as show below:

12. The application contains frameworks for devices and simulator both. Run the application
directly on simulator without copying any frameworks.

13. The application can be archived using steps in section: Archiving Authenticator
Application for running on device.

Chapter 2
Authenticator Application Workspace Setup

2-4

2.3 Archiving Authenticator Application
This topic describes the systematic instruction to Archiving Authenticator Application
option.

1. Set the device selection to Generic iOS device. Then go to Product → Archive.

2. Choose your Archive and then click “Export”, .ipa file will be generated.

Chapter 2
Archiving Authenticator Application

2-5

Chapter 2
Archiving Authenticator Application

2-6

2.4 Using SSL in Authenticator App
This topic provides information on Using SSL in Authenticator App.

Follow below stepsto setup SSL in Authenticator application:

Open Authentictaor application project → app.plist. Add below changes

1. PinnedUrl – Item 0 – replace @@PINNEDURL1 with your https url Enabling SSL
pinning in the application (without port)

2. To add SSL certificate into workspace follow steps in section

3. PinnedCertificateName – Item 0 – replace @@trustedCertificate1 with certificate name.
Example your certificate name added to your Project is certificate.cer, then
@@trustedCertificate1 should be replaced with “certificate”

Chapter 2
Using SSL in Authenticator App

2-7

3
Apply Privacy

This topic describes the systematic instruction to Apply Privacy option.

Apple requirements for Required Reason’s Api and Data Types usage

Note:

This document is for bank’s reference for the Apple’s rejection issue related to
“Required Reason’s Api and Data Types usage”.

References:

WWDC 2023 video.

https://developer.apple.com/support/third-party-SDK-requirements/

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/
adding_a_privacy_manifest_to_your_app_or_third-party_sdk#4336740

What’s needs to be done in the application

1. Since apple has pointed out Cordova as thirds party SDK which needs to add this, we
have added “PrivacyInfo.xcprivacy” inside cordova framework and added below items for
required reason Api and data types. Bank should delete its existing Cordova.framework
and and OBDXframework.framework and add the new one in the patch fix.

Note:

We have added as per what we have used inside the application and Apple’s
documentation, however Apple’s Email with details will be more useful to target
the required keys to be added.

<?xml
 version="1.0" encoding="UTF-8"?><!DOCTYPE plist PUBLIC "-//
Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd"><plist
version="1.0"><dict>
 <key>NSPrivacyAccessedAPITypes</key>
 <array>
 <dict>

 <key>NSPrivacyAccessedAPIType</key>

 <string>NSPrivacyAccessedAPICategoryDiskSpace</
string>

 <key>NSPrivacyAccessedAPITypeReasons</

3-1

key>
 <array>
 <string>E174.1</string>
 </array>
 </dict>
 <dict>

 <key>NSPrivacyAccessedAPITypeReasons</
key>
 <array>
 <string>C617.1</string>
 </array>

 <key>NSPrivacyAccessedAPIType</key>
 <string>NSPrivacyAccessedAPICategoryFileTimestamp</
string>
 </dict>
 <dict>

 <key>NSPrivacyAccessedAPITypeReasons</
key>
 <array>
 <string>1C8F.1</string>
 </array>

 <key>NSPrivacyAccessedAPIType</key>
 <string>NSPrivacyAccessedAPICategoryUserDefaults</
string>
 </dict>
 </array>
 <key>NSPrivacyTracking</key>
 <false/>
 <key>NSPrivacyCollectedDataTypes</key>
 <array>
 <dict>
 <key>NSPrivacyCollectedDataType</key>

 <string>NSPrivacyCollectedDataTypeDeviceID</
string>

 <key>NSPrivacyCollectedDataTypeLinked</
key>
 <true/>

 <key>NSPrivacyCollectedDataTypeTracking</
key>
 <false/>

 <key>NSPrivacyCollectedDataTypePurposes</
key>
 <array>
 <string>App functionality</
string>
 </array>
 </dict>
 </array></dict></plist>

Chapter 3

3-2

2. Additionally, there is “PrivacyInfo.xcprivacy” file added at Zigbank target level inside
Resources folder

Bank needs to add additional items as per their bank customize code in
“PrivacyInfo.xcprivacy” file. They can refer Apple documentation link for further details.
Also, Apple’s mail can contain details of what all is missing in the PrivacyInfo.xcprivacy.
Those items can be added as per Apple’s doc.

Note:

This step is not mandatory but if there any reference of such file in Apple’s mail,
bank needs to add privacy items details in application target’s
“PrivacyInfo.xcprivacy” file

3. Once added, build can be archived, and in organizer, right click on the application and
Generate Privacy Report. This report will have the only the details of Nutrition label added
in the application. Check if all nutrition labels declared in “PrivacyInfo.xcprivacy” file are
present in the generated reported.

4. Generate the application and upload to Appstore for Apple Review.

Chapter 3

3-3

4
Make IOS Application Ready for Production
Checklist

This topic provides information on Make IOS Application Ready for Production Checklist.

Apart from Apple AppStore Submission guidelines, below are checklists in IOS workspace

• Confirm the bundle identifiers and profiles are AppStore Profiles

• Confirm the suit name in app.plist is matching App Groups mapped to profile and set in
Target settings

• Server URL is correct in app.plist. Recommended is to use https URL with SSL certificate
from a valid trust Authority

• Recommended to enable SSL Pinning. If enabled, check all the configurations as stated in
configuration section

• App icons, splash images are updated

• Bundle version is set in “Bundle version string (short)” in info.plist and in ZigBank Target →
Info and in marketing version in Watch target → Build Settings.

• Push notification configurations are set to prod in config table and APNS keys are correct

• If Associated domains are enabled for usage then remove ?mode=developer

• Other IOS workspace configurations are followed as per section Configurations for the IOS
application:

• App Transport security is enabled by setting “Allow Arbitrary Loads” to NO for all target’s
info.plist. Test this once with production URL

• InspectableWebView property is set to false in config.xml

•

4-1

Index

A
Apply Privacy, 3-1
Archive and Export, 1-36
Archiving Authenticator Application, 2-5
Authenticator Application Workspace Setup, 2-3

B
Building UI Manually, 2-2

C
Changing App Icons and Assets, 1-36
Configurations for the IOS application, 1-4
Create Project by hosting UI on local server

machine, 1-2
Create Project Using Remote UI, 1-2

D
Deep linking - To open reset password, claim

money links with the application, 1-31
Device Registration and Push Registration

Functionality, 1-15

E
Enabling Force update, 1-13
Enabling SSL pinning in the application, 1-11

G
Generating Certificates for Development,

Production, 1-16

M
Make IOS Application Ready for Production

Checklist, 4-1

O
ODA Chatbot Inclusion, 1-23

P
Passkey (Passwordless login), 1-28
Pre requisite, 1-1
Project Setup, 1-1
Push Notification 2FA configuration, 1-23
Push Notification Actionable Alerts Configuration,

1-22

S
Scan to Pay from Application Icon, 1-27
Setup for Push Notification in the application, 1-20

U
Using Built UI, 2-1
Using SSL in Authenticator App, 2-7
Using unbuilt UI, 2-1

W
Widget Functionality, 1-25

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer
	Acronyms and Abbreviations

	1 OBDX Servicing Application
	1.1 Pre requisite
	1.2 Project Setup
	1.3 Create Project Using Remote UI
	1.4 Create Project by hosting UI on local server machine
	1.5 Configurations for the IOS application
	1.6 Enabling SSL pinning in the application
	1.7 Enabling Force update
	1.8 Device Registration and Push Registration Functionality
	1.9 Generating Certificates for Development, Production
	1.10 Setup for Push Notification in the application
	1.11 Push Notification Actionable Alerts Configuration
	1.12 Push Notification 2FA configuration
	1.13 ODA Chatbot Inclusion
	1.14 Widget Functionality
	1.15 Scan to Pay from Application Icon
	1.16 Passkey (Passwordless login)
	1.17 Deep linking - To open reset password, claim money links with the application
	1.18 Changing App Icons and Assets
	1.19 Archive and Export

	2 OBDX Authenticator Application (Futura Secure)
	2.1 Authenticator UI (Follow any one step below)
	2.1.1 Using Built UI
	2.1.2 Using unbuilt UI
	2.1.3 Building UI Manually

	2.2 Authenticator Application Workspace Setup
	2.3 Archiving Authenticator Application
	2.4 Using SSL in Authenticator App

	3 Apply Privacy
	4 Make IOS Application Ready for Production Checklist
	Index

